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SPACETRACK REPORT NO 

A RESTRICTED FOURJODY SOLUTION FOR 
""RESONATING SATELLITES WITHOUT DRAG* 

LJ* .... >. m- -       ~        » 
(ffi Richard S. Auj sakl  (^ fetylj 

A method of averaging is used to study two general 

problems for the drag free motion of an artificial 

Earth satellite.  First, the four body oblate Earth 

problem, which describes the satellite motion per* 

turbed by the point mass effects of the Moon and Sun 

as well as the oblate Earth is analyzed.  In this 

problem the first-order harmonic J7 and the second- 

order harmonics J. and J. are included.  Several trans- 

formations are introduced and the transformed dynami- 

cal system is analytically integrated.  Secondly, two 

specific classes of orbits for the four body oblate 

Earth problem with resonances due to the sectoral and 

tesseral potential of the Earth are examined.  The 

transformed dynamical system for this problem is also 

analytically integrated except for a numerical evalua- 

tion of the main ?• ionance effect.  Both problems con- 

sider satellites with orbital periods up to 24 hours. 

The resultant model is a mostly analytic, computation- 

ally efficient ephemeris generator which includes the 

most significant perturbations for satellites with 

orbital periods up to one day. 
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1.  INTRODUCTION. 

Four-body oblate Earth treatments include singly 

averaged numerical solutions by Kozai [14] , Kaula [11] , 

and Cefola [3] , singly averaged analytic solutions by 

Estes [4] and Koskella and Arsenault [13], and doubly 

averaged numerical solutions by Ash [1] and Lidov [16]. 

Doubly averaged analytic solutions have not been widely 

used despite the apparent potential for computational 

efficiency. 

There are very few references which treat the com- 

bined problem of resonating satellites in the four body 

oblate Earth problem.  The work of Bowman [2] develops 

a singly averaged numerical model for 12-h elliptic 

resonating satellites in the four body oblate Earth 

problem with drag.  A series of publications by Xamel 

and Tibbits [8], Kamel, Eckman, and Tibbits [9], and 

Kamel [10] studies a singly averaged, numerically in- 

tegrated model for 24-h resonating satellites in the 

four body oblate Earth system by augmenting the solu- 

tion of Kozai [14].  It is important to note here that 

a completely analytic solution was obtained by Roman- 

owicz [20,21] for arbitrary resonating satellites in 

the oblate Earth problem.  The Rowanowicz development, 

however, does not address third body effects. 
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Large scale space applications and simulations re- 

quire efficient and compact ephemeris generators which 

model the major perturbative effects for artificial 

Earth satellites.  This study is a development of such 

a generator for two related problems for these satellites 

The first development applies multiple transformations 

to the four body cblate Earth problem to obtain an an- 

alytic solution.  The first-order short periodic varia- 

tions due to J~ and the second-order long periodic 

variations (28 day and 365 day) due to lunar and solar 

effects are recovered using the transformationb intro- 

duced by a method of averaging [19].  The second 

development addresses the problem of resonating satel- 

lites in the four body oblate Earth problem.  These 

satellites are assumed to have 12-h or 24-h orbital 

periods.  The method of averaging is again used to de- 

rive a multiply transformed dynamical system.  The 

transformed dynamical system is then integrated analy- 

tically except for a numerical evaluation of the main 

resonance effect.  The resultant ephemeris generators 

are computationally efficient.  The second model re- 

duces tc the first cne under non-resonant conditions. 

For brevity, this discussion is presented in terms of 

the gravitational functions, and the explicit expres- 

sions of the final solution are to be found in the 



Appendices.  This is a first analysis of the resonant 

four body oblate Earth problem where multiple trans- 

formations are developed. 

The result is a model which addresses the same prob 

lems as the referenced papers, but does not readily 

reduce to any particular work. 

2.  THE FOUR BODY POTENTIAL 

The four body oblate Earth problem is a function of 

the perturbative effects due to the potentials of the 

Earth, the Moon, and the Sun. 

The spherical harmonic potential of the Earth is given 

by Kaula [12] as 

V 

1       a* pa 

E E-iTT*wsin« <ct«cosm* 
£=1       m-0 

•  S„     sin mü>) 

where P. is the associated Legendre functiont. The zonal 

potential (R ) can be separated from the potential due to 

sectoral and tesseral harmonics (R ) by 

V = R • R 
z   v 

t The mathematical symbols are defined in the table of 

notations. 
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where 

Rz  ' r  (1  "  J2   (-T}     P20   (sin «   "  J3   <T}     P30   (sin « CD 

a    ä 

-  J4   (T}     P40   (sin «••••) 

and R is expressed in terms of classical elements by 

Rv= Y. 
1 

lh     2  F£mp »J  £ 
Z=l  m=l p»0 q*-a 

Ma, 
I 

a 

where £,m,p,q are integers 

Glpq (6) Stmpq («.".«.0) 

(2) 

St.pq (-.M.0.8) £m 

-S 
£m 

* m (&-9)] 

£-m even 

cos [(£-2p)u> * (£-2p*q)M 

£-m odd 

S em 

£m 

• m (0-0)] 

£-m even 

sin [(£-2p)w • (t-2p*q)M 

£-m odd 

and J:p_D (i) and G.   (e) are functions of inclination and 

eccentricity, respectively (see Kaula [12]). 

The gravitational potential of the Moon or Sun is repre- 

sented by the expanded third-body potential: 
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R.. - Gm. 
[2 3 

7 * T^O (cos •> + h  P30 (cos •)••••! (3) 

where 

cos 4» * cos u cos U cos (fti-H ) 
A A 

- sin u cos U cos i sin (fl*H ) 
A A 

• cos u sin U cos I  sin (fl-H ) 
X       X K XJ 

(4) 

• sin u sin U cos i cos I  cos (ft-H ) 
x x    v  x' 

• sin u sin U sin i sin I 
x x 

which can be notationally simplified as (see Appendix H) 

cos $ • A cos f • B sin f 

A • X. cos F  • X7  sin F 
1 A fc A (5) 

B « X, cos Fx • X4 sin Fx 

It is assumed here that zonal variations due to J? are 

first-order effects, while all other perturbations are 

second-order effects.  The 24-h limit assumed for satel- 

lite orbital period permits a truncation of the lunar 

and solar potentials: 

M* r "inin -rtiiiMMilTiimlMM 



Rx • Gmx [ 7x 
+ Jj P20 (cos f)j (6) 

while the zonal potential R is truncated after J4.  The z 4 

potential for the four-body oblate Earth problem is then 

represented by: 

R • Rz + Rv * RL * Rs 

The associated perturbed dynamical system is defined by 

partial differentiation of R and substitution in the Lagrange 

planetary equations (see Appendix B). 

3.  THE EQUATIONS OF MOTION. 

The complete dynamical system includes the orbital 

motions of the Moon and Sun as well as the rotational rate 

of the Earth.  In this study, only the mean anomalies of the 

Moon {y.) and Sun {y  ) and Greenwich sidereal time variable 

(0) are assumed to have significant rates and it is assumed 

that I "H "G "E "A. »0.  Thus the dynamical system takes the form 

a  - az • aL • a%  • ay 

c « e2 • eL • es • ev 

(i)  • (i)z • (i)L • (i)s • (i) 

z L    s    v 

(7) 

_ 



•      • 

ü) - ü»2 * Ü)L * (üs * (üv 

M - n • M2 • ML • Ms • My (7) 

*L "NL 

Y  a N. 's   s 

6  • constant 

where the initial conditons are defined by a . e ,e . 
'00        0 

4.  THE FOUR BODY OBLATE EARTH PROBLEM, 

a.  The First Transformation.  For non-resonant problems, 

the dynamical system (7) is a function of two fast variables, 

M and e, which satisfy the conditions for application of the 

method of averaging.  Through Leibnitz's Rule, the potential 

R may be averaged directly; 

Define: 
2TT 

< * >x * H / ß dx 

Then 

* p >M.e *  <  RZ  *  M * < RL »  M * < Rs ? M * < «V *  M. 

where 

*V » M.9 " 

and from Liu [17] 

< R M 

J7n" 

^T (1 T sin2i) 18) 

_ä__  



3J4n 3 2 . 2. 4. 
64a 0 
CT (I + f* ) (.8 * 40 sin l + 35 sin i) 

3J3n 2  *- e sin i (5 sin i - 4) sin w 
836* 

15J4"2  2 . 2. 

64a 0 

2 C8) 2~y e sin i (6 - 7 sin i) cos 2w 

3J2 n   40 cos4. m   8 cos2. . e2 (5 . 18 CQs2i 
 2TT 128a 0 

•  5  cos4i)   •  40   (1   -   3  cos2i)2 

2 2 4 
•  2e     (1-16 cos  i  •  15 cos  i)  cos  2u>] , 

and 

x     M 

Gill        a y y y - y 
—\-   (3A     •   3B^   -   2   •  e*   (12AZ   -   3Bfc   -   5)) 
4r 

First-order short periodic variations due to J, are given 

by Liu (Ref 17) and repeated in Appendix F, while the 

second-order short periodic variations are neglected. 

b.  The Second and Third Transformation.  The averaged 

dynamical systen, which is a function of the singly averaged 

potential <R>M Qt is dependent upon the fast angular 



variable y,.     The method of averaging is again applied 

by transforming the potential to remove the mean anomaly 

of the Moon: 

<<  R >u rt>  = < R >.. + << R» >X4>  + < R >., M,9 Y,      z M      L M Yj      s M (9) 

The doubly averaged dynamical system, due to Eq. (9) 

is now a function of three angle variables (i,  y  , and 

oi, all of which are nearly the same order.  The method of 

averaging can be used to derive a transformed dynamical 

system which is independent of ß, YSI 
and w.  This 

process would, however, give rise to several singularities 

in the associated transformations.  Each singularity would 

require a special solution in some small neighborhood of 

the singularity.  Such a piecewise treatment results in 

multiple sets of solutions and is not compact.  Conse- 

quently, this development uses the method of averaging 

to derive a transformed dynamical system which is indepen- 

dent of Y alone.  The method of averaging is applied tc 

the potential  R>M fl>  to remove the periodic dependency 
Li 

upon Y«. 
: 

M,6 YL Ys z M      L M YL      s M YS 

(10) 
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where 

K< Rx VY. 
Gmxa' 

i „ „-i\i/i   tzi + h •   (4 + 60) 
8Ax d-V) 

and 

Z, = 3 (X? + X2 - e2 (4X? - X2)) 1  "3 1  "3 

Z3 = 3 (X2 + X4 + QZ
   
(4X2 " X4)} 

The long periodic variations in YT and y are define' 

by the method of averaging-»-* and denoted by: 

6R = 
Gmxa' 

x  ..3 4A;NX(1 - Ex) 
1-372 (ZlFl * Z2F2 * Z3F3 * F4)     n) 

where 

Y • Y  * N  (t-t ) ?x   x    x    oJ 

o 

F = \  * 2 Ex sin Yx 

1= I sin Fv cos Fv • T (F. V * \  Ex sin Fx cos2 Fx 

•• See Ancillary Topics for further discussion 
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••• T E sin F 
3 x     x 

F2 * I si"2 Fx - J Ex cos3 Fx ' I 

F = - i sin Fv cos F + i (F - Y ) + I £ sin3 F 
3    2     x     x  2 v x  JxJ       2 x      2 

F. * -(2 + 3e ) E cos F 4   v      J     x     x 

Z2 = 6 (XXX2 + X3X4 • e- (4XjX2 - X^)) 

c.  Four-Body Integration.  The triply transformed 

four-body oblate Earth dynamical system for non-resonating 

satellites has the form (with the < > notation implied): 

•    •    • 

e  » e • e, • ee Z     L     S 

(i) - (i)2 + (i)L • (i)s 
(12) 

•   •   • 

o - at  • aL • ns 

•      • 

U)   * 0>   • 10,  • fa) 
Z     L     S 

11 
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•      • 

M = n+M + M. + M 
Z       Li S 

YL = NL 

Y  = N 
s   s 

6 = constant 

whore the secular rates are presented explicitly in 

Appendix D for zonal expressions and Appendix E for 

third body effects. 

This system is a function of variables which vary 

slowly with time.  It is assumed that the variable 

rates in system (12) can be treated as epoch quantities 

for integration purposes, and that the resultant integra 

tion may be valid for an extended period of time.  For 

example: 

a  -  a 

« • • 

e  =  eQ  •   (e     •  eL *  es)Q   (t-t  ) 

i • i0 • Hi), • (i)L • Ci),)0 (t-t0) 

• • » 
Q-   Q0  •   (^  •   ^  •   fls)o   (t-tQ) 

12 
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U) * U)  + (w  + a), • w.)rt (t-t ) 
S'O 

M * Mrt + (n + M, + M. • Ml  (t-t ) 

5.  RESONANCE PROBLEMS. 

A resonance condition exists between M and 6 when 

there exist integers l9  m, p, and q such that 

(£-2p)(ü + (£-2p+q)M + m(fi - 9) < e 

where t  <  JJ4. 

(13) 

Equation (13) naturally motivates the definition of two 

new variables A., and A~, where: 

•  • 

Aj - M • 2(fi - 6)  when M * 29 

X2-«*M*Q-6 when M = 9 

a.  The First Transformation.  The dynamical system 

(7) is a function of two fast variables M, and 9, but does 

not satisfy the conditions for a method of averaging 
•    •   •   • 

under the resonance conditions M - 2 8 or M = 6. A 

change of variable is suggested: 

M « A. - 2fl • 28 or M » A- - n - w • 6 (14) 

13 

     



which results in a new dynamical system 

•   •   »   • 
a  = az • aL + a$ • ay 

•       •       t 

(15) 

e  = e  + e. + e  + e 
z   L   s   v 

(i) = (i)z • (i)L * (i)s • (i)v 

•    •   •   •   • 
n  • Q    • ft. + ft + ft 

z   L   s   v 

•     •    •    •    • 
CO     =(l)   +tü,  +(l)   • Ü) 

z   L   s   v 

•        • •       • 

A   = A,  or X  • A- 

>L = NL 

Y  - N 
's    s 

6  * constant 

The dynamical system (15) is now a function of one fast 

variable, 0, and is in a form which satisfies the condi- 

tions of the method cf averaging.  Again the potential is 

14 
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averaged directly; 

< R(>,e) >e   = < Rz(x,e) >e    • < RL(x,e) >e    + < RS(A,6) >( 

• < Rv(x,e) >e 

ZM LM sM vv   '     6 

* ** 
where  R    is  independent  of  6 and R       is  dependent  upon  0 

as  a  result  of  the change  of variable,   Eq.   (14).     If 

Q*mpq  is  defined bV: 

«fpq  "   CI.«,/«1*1)  H,np(i)  G       (e)    V  <CL * 3»> fcmpq 

then 

£mpv   7     fcpq 

v       1' - ^"^ xAmpq t,m,p,q KM £ Qo-«n   cos   ((£-2p)o)   •   (Ä-Zp+qJX.    -   X.   ) 1 im- 

or 

C   (X2>   ' L 
*,m,p,q 

(16) 

Qimpq C0S   I'*-  *   (£"2P^)X2   '   W 

15 
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where 

arctan  (StB/C ) (l^m) even 

im 
arctan (C^/'S^)   (JL-m)  odd 

In either case, RV(A) is summed over all possible sets of 

subscripts (&,m,p,q) such that Eq. (13) is satisfied. 

Therefore 

P**(X»e) = R„(X,e) - R* (A) and 

< R** (X,e) >e = 0 and < R* (A) >e • R* (A) 

and 

< R(x.e) >9 - < Rz >M • < RL >M • < Rs >M • Rv (x).   (17) 

is the singly averaged four-body oblate Earth potential, 

under resonance conditions.  First-order periodic varia- 

tions in mean anomaly are recovered as before while other 

short periodic effects are neglected. 

b. The Second and Third Transformations. Again, the 

singly averaged dynamical system is in a form which per- 

mits averaging over Yi and YC successively.  The resultant L       S 

resonating triply averaged potential is given by: 

<<<  R(X,0)   >fl>     > 9YL     Ys   '   <   Rz   V   *   K<  RL   VYL 

16 
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+ « Rs VY. * Rv <»> 

and the associated dynamical system has the form 

•   • 
a • a. 

•   • 

e • em  + et • e„ z   L   s 

(i) - (i)z • (DL • (Ds 

•   • 

Q = fiz * nL * ns 

(18) 

•   •   • 

U) z  WL  ws 

•   • 

Ä, or \ s X2 

N 

0  • constant 

"*   **  '*  **     '* 
where e , (i)v# ßv» w , and M are neglected.  The variable 
* * * 
a may be obtained by partial differentiation of R  (X) and 

substitution into the Lagrange planetary equation for a. 

17 
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It is convenient at this time to change variables and re^ 

place a by 

•* •* 
ny = (-3n/2a)ay 

c.  Four-Body Integration.  The dynamical system (18) 

is again a function of variables which vary slowly with 

time, except n and X, which may oscillate rapidly.  Ex- 

cept for n and X, the orbital element rates in the sys- 

tem (18) may be treated as epoch quantities for integration 

puiposes.  Further, most of the variable expression in n 

and X are assumed to be epoch constants, except for n, w, 

and X as follows: 

"v = ( 3noao/w) 2: 
£,m,p,q 

U'2p+q) (Q£mpq)0 sin (cu) 

• (fc-2p+q) X -  X0J £nv 
(19) 

n • (Mz + ML • Ms • "{Üz  • fiL * fis)"26)o 

•    ••••••••• 

n * (Mz • ML • MS • f*z • nL • fis • ü)Z • u)L • »s - e)o 

where c =-q or (£-2p) (see Eq. (16)) and u • uiQ  • uQ   (t-tQ) 

for efficiency, a numerical integration of Eq. (19) is 

chosen, resulting in a mostly analytic integration cf 

the system (18).  It should be noted that the argument 

18 
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of perigee must be allowed to vary with time during the 

integration of Eq. (19), particularly for the highly 

eccentric 12-h satellites. 

6.  ANCILLARY TOPICS. 

a.  Periodic Expressions.  The periodic variations due 

to Y, and y    are recovered in the discussions of second 
L        S 

and third transformation.  These periodic variations are 

functions of the integrated transformed variables and are 

quite complex.  To be consistent with the assumptions 

made in the integration sections, all variables except F. 

and F are evaluated under epoch conditions.  Thus: 

6R 
Gm a' 

x 

4A3N 
x x Ci-eV'2 (Z  Fj * Z  f    • 

0 0 
30 

P3 + V  (20> 

Both long and short periodic variations are singularity 

free through a change of variables. An example of *uch 

a change of variables is to be found in Appendix G. 

b. Small Divisors. The classical element formula- 

tion of the secular systems (12) and (18) suffers singu- 

larities for zeros in inclination and eccentricity in 

second order expressions from R. , R,, and R, (.J- only). 

These systems can be formulated in terms of equinoctial 

elements (see Ref (3)). The expressions with classical 

inclination singularities become third order non-singular 

19 
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expressions in a neighborhood of the singular point. 

The classical eccentricity singularities occur in the J, 

terms.  For high altitude satellites where lunar and 

solar perturbations are second-order, the perturbations 

due to J, become third-order when eccentricity is small. 

In either case the expressions with classical singularities 

become third-order near the singular points and can be 

neglected in this second-order development.  The same 

result is more economically obtained by simply neglecting 

the singular classical variable expressions in some 

small neighborhood of the singularity. 

c. The Ephemeris of the Moon and Sun.  The classical 

orbital elements of the Moon and Sun with respect to the 

equatorial plane at the time of epoch of the satellite 

elements are obtained using the model presented in the 

Explanatory Supplement to the Astronomical Ephemeris and 

American Ephemeris and Nautical Almanac [5].  The model 

is supplied, wit!out explanation in Appendix I. 

d. Other Simplications.  Through order of magnitude 

analysis of the QÄmDQ coefficients in Eq. (19), a signi- 

ficant reduction in the number of terms in the resonating 

potential is possible depending upon the desired accuracy. 

For the existing 24-h satellites, the most significant 

Q.   are defined by the set of quadruplets (t,m,p,q) • 

{(2,2,0,0), (3,1.1,0), and (3,3,0,0)} .  For the existing 

20 
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12-h satellites, the set of significant quadruplets is 

much larger due to the ranges of values for inclination 

and eccentricity.  In general, the more significant 12-h 

quadruplets are those where i  <  6 and m < 6 and Eq. (13) 

is satisfied.  The results obtained for this paper are 

based upon these simplifications.  For NORAD applications 

the generalized GoDÜ(
e) and F»mn(i)» 

as presented in 

Appendix J, proved to be too cumbersome.  Explicit ex- 

pressions have been developed for the most frequently 

used eccentricity and inclination functions; these 

explicit functions are also presented in Appendix J. 

7.  RESULTS. 

The graphical results presented here are long-term 

comparisons versus epoch orbital elements of existing 

satellites extracted from the NORAD Historical Data 

System.  ^Data anomalies due to historical circumstances 

are not edited).  The values of the NORAD elements are 

represented by X's.  The solid lines are predictions 

with this ephemeris generator, assuming the "X" denoted 

by "i:M as the epoch value.  The SAO 1969 gcopotential 

model is used. 

Figures 1 :md  2 depict the mean motion and east 

longitude (A-j for the 24-h satellite 1971-095B for the 

period September 1972 through April 1978.  Resonating 

about both "null points' , this  atellite almost cir- 

cumnavigates the Earth. 

21 
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Figures 3 and 4 present the mean motion and resonance 

angle (Aj) for the elliptic 12rh satellite 1964-049E 

for the period January 1970 through July 1971. This 

satellite represents an extreme case of resonating 12-h 

satellites in terms of maximum drift rate in A1 (approxi- 

mately 1.35/day). 

These two test cases provide a successful examination 

of this model for resonating satellites in the four-body 

oblate Earth system. 

8. REMARKS. 

Throughout the region of interest it is assumed that 

the zonal effects due to J? are first-order variations 

while all other perturbations are second-order variations. 

This, of course, may not be valid  for cases in which 

the lunar and solar effects are either larger or smaller 

than second-order. 

For near-Earth satellites, where lunar and solar per- 

turbations are third-order, the reader is referred to 

one of the many oblate Earth second-order theories. 
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10.  NOTATION. 

All variables are referenced to a non-rotating 

Earth-centered coordinate system defined by the equatorial 

plane and the line of poles.  In this system, the Sun 

"appears" to revolve about the Earth and is thus given 

orbital elements. 

Symbol 

A 

A 
x 

a 

a 
e 

B 

B x 

£m 

F. 

Imp 

tpq 

Definition 

Intermediate variable 

Semimajor axis of body X 

Semimajor axis of satellite 

Mean equatorial radius of the Earth 

Intermediate variable 

4 1 - E 

Cosine coefficient of spherical harmonic 
potential 

Eccentricity for body X 

Eccentricity of satellite 

Periodic functions of F  (see Eq. 11) 

True anomaly of body X 

Inclination function 

True anomaly of satellite 

Gravitational constant 

Argument of perigee of body X 

Eccentricity function 
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Symbol 

H 

x 

J. 
i 

M 

m 

m 
3 

N 
} 

n 

o 

P 

P 

Q 

Im 

fcmpq 

R 

ÖR 

Definition 

Arbitrary function 

Longitude of node of body X 

Inclination of body X 

Inclination of satellite 

Coefficient of zonal potential term 

Subscript, referencing the lunar potential 

Subscript, degree of spherical harmonic 

Mean anomaly of satellite 

Subscript, order of spherical harmonic 

Mass of body X 

Mean motion of body X 

»lean motion of satellite 

Subscript, evaluated at epoch 

Legendre associated polynomial 

Subscript, index of inclination function 

Amplitude of term in spherical harmonic 

potential disturbing function 

Subscript, index for eccentricity function 

Disturbing function 

Periodic expression from method of averaging 

Radial distance to satellite 

Radial distance to body X 
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Symbol 

s 

S„ 
Um 

Q 
Jlmpq 

t 

ü 
X 

u 

V 

X. 
i 

Z. 
l 

8 

o 

X,       X; 
1 

M 

*> 

n 

Definition 

Subscript, referencing the solar 
potential 

Sine coefficient of spherical harmonic 
potential term 

Combined spherical harmonic potential 
term 

Time 

F + G x   x 

f + id 

Subscript, referencing the Earth's 
harmonic potential 

Intermediate variable 

Subscript, read L for lunar; s for solar 

Intermediate variable 

V 1 - e2 

Greenwich sidereal time 

Resonance angle(s) 

Gravitational constant of Earth's mass 

Latitude 

Mean anoms y of body X 

Phase angle between r and r 

Longitude 

Longitude of node of satellite 

Argument of perigee of satellite 

27 

•••BiattMadMaifliiiBaäiJi^^^a^,^.^-. l1l„..,,., 
^nte 

-_-; -..- 



* • »•»l^»*»!»«««»««»^ <* «.»-rWV: 

11.  REFERENCES. 

1. Ash, M.E., "Doubly Averaged Effect of the Moon and 

Sun on a High Altitude Earth Satellite Orbit", Celestial 

Mechanics, Volume 14, No. 2, September 1976. 

2. Bowman, B., "A First Order Semi-Analytic Perturbation 

Theory for Highly Eccentric 12 Hour Resonating 

Satellite Orbit", NORAD document, unnumbered, Nov 71. 

3. Cefola, P.J., and Broucke, R., "On the Formulation of 

the Gravitational Potential in Terms of Equinoctial 

Variables," AIAA Paper No. 75-9, 1975. 

4. Estes, R.H., "On the Analytic Lunar and Solar Per- 

turbations of a Near Earth Satellite", Celestial 

Mechanics, Volume 10, No. 3, 1974. 

5. Explanatory Supplement to the Astronomical Ephemeris 

and the American Ephemeris and Nautical Almanac, Her 

Majesty's Stationary Office, London, 1961. 

Fitipatrick, P.M., Principles of Celestial Mechanics, b. 

8. 

Academic Press, N.Y., and London. 

Hujsak, R.S., "A Restricted Four Body Solution for 

Resonating Satellites with an Oblate Earth", AAS 

Paper No. 79-136, 1979. 

Kamel, A. and Tibbits, R., "Some Useful Results on Initial 

Node Locations for Near-Equatorial Circular Satellite 

Orbits", Celestial Mechanics, Vol 8, No. 1, 1973. 

28 

[frill li'iMiM lA—-**—->'»*»-—-*•---—'••—••'-••••'•'-••- -••«• --.—*.-'-A—-.-i, -ji,^ i^rfiflini-rii i T" 



MWliUMlWMWi*  .J.Uli,Ui JOU&mmvmri+mmm^ ->*mtmr>^. 

9.  Kamel, A., Ekman, D., and Tibbits, R., "East-West 

Stationkeeping Requirements of Nearly Synchronous 

Satellites Due to Earth's Triaxiality and Luni^Solar 

Effects", Celestial Mechanics, Vol 8, No. 1, 1973. 

10. Kamel, A., "East-West Stationkeeping Requirements of 

24-h Satellites Due to Earth's Triaxiality and Luni- 

Solar Effects", Celestial Mechanics, Vol 12, No. 4., 

1975. 

11. Kaula, W.M., "Development of the Lunar and Solar Dis- 

turbing Functions for a Close Satellite", Astronomical 

Journal, Vol 67, No. 5, June 1962. 

12. Kaula, W.M., Theory of Satellite Geodesy, Blaisdell 

Publishing, Mass., 1966. 

13. Koskella, P., and Arsenault, J., "Lur.i -Solar Perturba- 

tions of the Orbit of an Earth Satellite", ESD-TDR-62- 

226, 15 Sep 1962. 

14. Kozai, Y., "A New Method to Compute Luni-Solar Perturba- 

tions in Satellite Motions", SAO Special Report No. 349, 

February 1973. 

15. Kyner, W.T., "Averaging Methods in Celestial Mechanics", 

The Theory of Orbits in the Solar System and in Stellar 

Systems, edited by George Contopoulous, Academic Press, 

London and New York, 1966. 

16. Lidov, M.L., "The Evolution of Orbits of Artificial 

Satellites of Planets Under the Action of Gravitational 

Perturbations of External Bodies", Planetary Space 

Sciences, Vol 9, 1962. 

29 

' 

mm 



18 

19 

17.  Liu, J., "A Second-Order Theory of an Artificial 

Satellite Under the Influence of the Oblateness of 

Earth", Northrop Services, Inc., MT240-1203, Jan 1973. 

Liu, J., "Satellite Motion About an Oblate Earth", 

AIAA Journal, Vol 12, No. 11, November 1974, pp 1511-1516 

Morrison, J.A., "Generalized Method of Averaging and 

the Von Zeipel Method", Methods in Astrodynamics and 

Celestial Mechanics, edited by R.L., Duncombe and V.G. 

Szebehely, Academic Press, N,Y. and London, 1966. 

20. Romanowicz, B.A., MOn the Tesseral^Harmonics Resonance 

Problem in Art if idal-Satellite Theory", SAO Special 

Report No. 365. March 1975. 

21. Romanowicz, B.A,, "On the Tesseral-Harmonics Resonance 

Problem in Artificial-Satellite Theory, Part II", SAO 

Special Report No. 373, March 1976. 

30 

• i -~ •iiiilMMWH 

,    in   -      ..l     .MI   Wii mum 



APPENDICES 

A. A Review of the Method of Averaging 

B. Lagrange Planetary Equations 

C. The Truncated Third Body Potential 

D. Zonal Secular Effects 

E. Third Body Secular Effects 

F. Zonal Periodic Effects 

G. Third Body Periodic Effects 

H. Initial Variables Common to Appendices E and G 

I. Lunar and Solar Ephemerides 

J. Eccentricitv and Inclination Functions 

•auttHii 

**>"*>.•• 

-• -— • 



APPENDIX A 

A REVIEW OF THE METHOD OF AVERAGING 

The following discu$sion is extracted verbatim from Liu 

[18] with permission of the author and formally documents 

the procedures of the Method of Averaging.  For a more com- 

plete discussion, readers are referred to Morrison [19] or 

Kyner [15]. 

Consider a system of first-order ordinary differential 

equations written in the component formt 

xi • EXU (v V + £ x2i (v yn> 

yj - W * fYij <v V *E Y2j <v y„> 

(A-l) 

where i = l,2,...,M,j = 1,2,.,.,N, 1 < m < M, and 1 < n < N 

with the initial conditions x (0) = a.,, y (0) • b .  The 
m      m  n      n 

x , are referred to as slow variables because their time 
m' 

variations are proportional to the small parameter e. The 

y are referred to as fast variables because the dominant 

parts of their time variations are proportional to t. The 

functions %u   (x.5 yn), X£i (xm; yft) , Y^ (x.; yn) , 

t If F.. i a 1,2,...L, are functions of the variables x , i *      * * ' m 

m » 1,2,...,M, we write F.(x ).  If F- arc functions of 

variables x_ and y . m • l,2,...,M,n • 1,2,....N, we write 
m     n 

A-l 

. , ,.^ 
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and Y,. (x ; y ) are assumed to be continuous functions of 

x  and y with a period of 2TT.  In general, the dynamical 

system, Eqs. (A-1), is non-linear in nature and complex in 

form and hence the integration of the system is usually 

analytically intractable. 

As the first step in the solution, a transformation is 

introduced 

x.   =  x. i+ ePH <v ^ + £ p2i «v y^ 

Y-   • y    •  €Q, •   (x   ;   y  )   •  e^Q-,.   (x   ;   y  ) 7)       7j Mj   v  m'   7n' x2j   v  m*   7n 

(A-2) 

so that in a sense the differential equations become 

simpler to handle in terms of the new variables x  and v . 1 m    • n 

Here x. and y. are regarded as the new unknowns and P,. (x ; y ) , 
X i XX     Hi     11 

P2i (V yn
}>  Qlj (V V' Q2j (V V are Peri°dic func" 

tions of each y  as new functions to be determined in such n 

a way as to effect a simplification in the transformed dynami- 

cal system.  It is desired that the fast variables y  (to 

the second-order in e) be eliminated from the transformed 

differential equations.  Thus, the transformed differential 

equations are to have the form 

2 *u. 

*i   •  cUli(xm>   *  e  U2i(V   *  c  *li(V  V   c) 

(A-3) 

*j   "  W   *  cVlj^>   *  *Sj<V   *  «Sj«5»5   V   *> 

A-2 

'• ' — 
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for suitable functions U,., Vji*  ^i,» V?i'  ^or a seconc^ 

order theory, the third-order terms W,. and W2- will be 

ignored.  Thus Eqs. (Ar3) become 

X. - cUH(xm) + e\^m) 

h   '-  W +eVlj(xm) *e VV (A-4) 

with initial conditions x^fO) s a . y (0) = b .  These 
mv '   m' 7 n      n 

initial values are obtained by substituting the initial 

values a , b  into the transformation (A-2).  The explicit 

expressions of functions I),., U-., V. ., V2i, P^, P2i» 

Q,•, and Q?. will be given here without proof.  For the 

thorough discussions of the general theory of the method of 

averaging, see Refs 19 and 15. 

To describe the explicit expressions of these functions, 

the necessary relations and their definitions will be 

introduced.  To begin with, the Fourier series expression 

for the perturbing function X,. has the form 

XH <v y„> • xiio(\,> • hn (v V 

where 

(A-5) 

/    \ N       w7T 

A-3 
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xii: (v yj m\ { xiiikc^C05^^J + xiiiks^Vsin^'yJ} 

IhYl  " I    kn yn 
n=l 

(A-6) 

In Eqs (A-6), the following definitions apply.  The 

notation k * (k,, k2,...., k ,  kN) is used to denote a 

vector, each component k  is an integer; k • 0 is not per- 

mitted.  The notation T indicates summation over all possible 

integer vectors k. 

The notations X,.,, (x ) and XiiiVcC^O denote the coefficients 

of the cos [k,y] and sin  [k,y] terms, respectively, in the 

summation.  These Fourier-series coefficients are to be 

determined in the usual way.  It can be shown by the method 

of averaging that 

uii<*-> = xno(V'  VV- YljO<*«> (A-7) 

and 

-1 pii <V V "I    Ik.«Vl  x 

(X
lilks(xm)cos(^yl • Xlilkc(xm)sin^'>'J} 

Q,j (xm; yn) - - I  [k.zcxj]*1 x 

A- 4 
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.^feqPNjM 

{Sljks(VC0Sti>y] • Sljkc^sinlk,y]} 

where 

M w*GL) 
Slj - I Plr <V *»> -fe 

r-1 

m- 

9x. * Ijl <V *n> (A-9) 

In Eqs. (A-7) and (A-8), the notations Y^^xJ, YJ.J (xm; yn) 

S, i..(x" ) and S...(x" ) have the similar definitions which 
ljks m      ljkc • 

apply for X^CxJ, XmCv y„), ^„j,^,) and X^^Cx,,). 

respectively-  Secondly, two new functions are introduced 

Rli <V 7n} • X2i <V 5r»J * 

M 

r-1 

Pir ^ f) !^Vial  . Blröy ÜHÜELla 
lr      •      n a- lr    m - 

N 
I 

s-1 

3X..(x   ;  y ) 
Q,. ÖL;5U-Ii   m     n 

Is   v m'  'n 
»y. 

- vi,<V 
Jy. 

R2j iv yn
} • Vv yB> * (A-10) 

.MM _      I'UlJ 

11   I pir <v yn> piw <v y.) -r^rf- * 
r-1 w-1 r    w 

AS 
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M 

I 
1=1 L 

Plr  <V  V  -il^-a- "  Ulr<V       1J   .-    n 

3x„ 9x„ 

N 

s-1 

Q  ,, ; 7 ) ÜüS^ .„_,*, ^iiiVIni ;lsv*m' 'n- 
»y. 

" Vls<V 

The method of averaging shows that 

ü2i<*m>  * RliO^>  VV   -R2j0^ 

and 

P2i   <V  ?«>   =  "    |   tt.lG.3r1* 

ay, 

(A-li) 

{Rlilk5(xm)costt»y)   -  RiiikcUn)sin[k,y]> 

-1 
Q2j <v y„) - - I tt.zog]   x 

(A-12) 

{S2jks(xm)costt»y] " S2jic(xm)sin[k/y] 

where 
M      -     *Zi<*J 

S2j • I  P2r <V*«> -tr*-*^! CV '»> 
r = l 3x 

(A-13) 

Again the notations Rli0(xB), Rul (xmJ yn), Ruifcs(xra), 

Rlilkc(xm); R2jOCxm>' R2jl(V *»>' and 52jks' Ssjkc xm} 

have the usual meaning in the Fourier series expressions 

tor R.., R2-, and S2-, respectively.  It should also be noted, 

in arriving at these expressions, that the nonresonant condi- 

tion, i.e., (k,Z(x )]   i  0, has been assumed. 

A-6 

- 
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Following the determination of the functions IPs, V's, 

P's, and Q's, Eqs. (A-4) may either be integrated analytically 

or integrated numerically with a much longer integration 

step time than may be used with Eqs. (A-l).  The second- 

order solution for x- and y. can then be obtained from Eqs. 

(A-2). 

A-7 
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APPENDIX B 

LAGRANGE PLANETARY EQUATIONS 

The Lagrange Planetary Equations are presented here for 

completeness: 

a = 

e  = 

2na2     9R 
u        3H 

1/2 
i_   / ll\ 3R + np*  3R 
ae   \ u    / Jm      pe    "5M 

f\^   _ 1 9R   ,   cot   i  3R 
Cl3   "  "  h  sin  i    SB + "R      3w 

ß = 
1 3R 

h  sin  l Ti 

O)   = 
h       3R       e .      ' ^  -   (cos  l)  n yae 

np*  8R       2na2    / 9R 

M 

where 

h = na  8 

p*  *   aß 

/v 

-l 
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APPENDIX C 

THE TRUNCATED THIRD BODY POTENTIAL 

1. The truncated potential for a third body (x) is given 

by 

Rx s  Gmx ^T P2 (cos 4>) 

x 

where 

cos <J> = cos u cos U cos (ft - H ) 
A X 

- sin u cos i cos U sin (ft- H ) 
X X 

+ cos u sin U cos I  sin (ft - H ) X     X    v    xJ 

+ sin u cos i sin U cos I  cos (ft - H ) 
J»> -A. A 

• sin u sin i sin U sin I x     x 

C-1 

•   ••- m Trmnr-i irrmr rygrümn - 

Mii-ii .•  ri-'n nriiffMfr' 
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2.  The averaged potential for a third body is given by 

Gm a 2 

Rx  = —£j-   [~3A2  +  3B2   -   2  + e2(12A2   -  3B2   -  3)1 

where: 

A = cos co cos U    cos  (ft  -  H ) 

-   sin co cos  i cos  U    sin  (ft  -  H  ) x    v    xJ 

+ cos co sin U cos I  sin (ft - H ) 
X       X      v      XJ 

+ sin co cos i sin U cos I  cos (ft - H ) X     x     *•     x' 

• sin co sin i sin U sin I 
x     x 

B = - sin co cos U cos (ft - H ) 
A A 

- cos co cos i cos U  sin (ft - H ) 
A A 

sin co sin U cos I  sin (ft - H ) 

• cos co cos i sin U cos I  cos (ft - II ) X       x      v      XJ 

• cos to sin i sin U  sin I 
A A 

3.  The potential for a third body, averaged first over one 

period of the satellite, and further averaged over one 

apparent period of the third body is given by: 

C-2 

- 
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Gm 
R 

4A 3(1- x *•  x 

/ _ \lz    +1 

1-E 2)3/2  L 2  X  2 y Z. - (2 + 3e') 

where Z., Z- are given in Appendix H, 

2. 
(note that (1-E ) terms are dropped in NORAD applications) 

C-3 
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APPENDIX D 

ZONAL SECULAR EFFECTS 

The singly transformed dynamical system derived by 

Liu [17,18] is given in terms of classical elements. 

a = 0 

- 3ynJ2
2(-)  sin2i (14-15sin2i) e (1-e2) sin 2u 

£ nJ.( - j sin i (4-5sin i) (1-e ) cos w 

15 j   /RV sin2i (6-7sin2i) e (1-e2) sin 2 w 

(i) 
3 „T 2 / R \4 sin 2i (14-15sin2i) e2 sin 2 u> 
W nJ2  P 

/  \ 3 
• I  nJ3 ( - )  cos i (4-5sin2i) e cos u> 

* H nJ4 ( " )  sin 2i (6_7sin2i) e2 sin 2 u 

»I "T^ff )' (^5sin2i) •A*!2!?)4 X 

48-103sin2i • U^-  sin4i • ,   9.2.   45  . 4. \ 2 7 - j  sin 1 - -*- sin l 1 e 

D-l 

^.-  ... . .«„., —Jh. 



+6fl*| sin2ij (4-5sin2i)   Oe2)1/2   - 

- j [2(14-15sin2i) sin2i - (28-158sin2i 

+ 135sin4i) e2] x 

cos 2 w i*  g- nJ- !)•[ (4-5sin
2i) sin2i-e2cos2i J e sin i 

] + 2 sin i (13 15sin2i) e| sin w - i| nJ. / | ]  x 

16-62sin2i + 49sin4i • j  (24-84sin2i • 63sin4i) e2 

r   2- sin i i (6-7sin2i) - \  (12-70sin2i 

• 63sin l) e I cos 2 ü) 

3     ,/R\
2 3     T  2 / R \  4 

2  nJ2    p C0S  x   •  I nJ2   ( p  ) COS    1 

•  f  d-e2)1/2 

D-2 
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-   si in
2i [§• |C1V)V2]    +^(1  +  Ssin2i 

• ~- (7-15sin2i)  cos  2 u>J- | nJ3 ( £ j 3 x 

(15sin  i   -   4)  e  cot   i  sin u>  • il nJJ [ - 16       4 \ p cos   i  x 

I 

(4-7sin2i)    ( 1  + | e2 )    -   (3-7sin2i)   e2  cos  2 u ] 
"z   •»   |^!j2(|)'(l-4si„2i)(l-e2)^ ] 

•i-,'(*) 4|f1-f.i,'i |'»v, 

[»< 
* 141 1 - | sin2i * ^ sin4i) • | f 1 - sin2i 

- | sin4i J e2 • ^ sin2i (14-15sin2i) | 1 

•] | e2) cos  2  b) | (l-e2)1/2 

•i-V(j)V.V1' «|,[,.^ £sin2i 

• £ sin4i  • (  |-  Ssin2i  .^si^il.2 

D-3 
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i   (l •Ssin2!  - I°isin4i)e4 e       .   2 + -g- sin i x 

[70-123sin2i +   (56-66sin2i)  e2]   cos  2 u> 

27      4 4. 
*-,(! 

_2, 
iT8 e    s*n  *  cos  4  w »      °" n^7 I «   »       s*n  *   (4-5sin  i)   x 

l-4e^ 
(l-e2)1/2  sin a)  - ^ nJ'(p)     (8   " 40sin2i 

•  3Ssin4i)  e2VlV *^nJ4(j) 

?in2i   (6-7sin2i)   (2-5e2)   (l-e2)1/2  cos  2 u> 

where R  is   the equatorial  radius  of  the  Earth,  and p  =  a(l-e  ) 

D-4 
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APPENDIX E 

THIRD BODY SECULAR EFFECTS 

The following equations represent the secular effects 

due to a third body (subscript x). These expressions can 

be obtained by partial differentiation of the doubly averaged 

third body potential as given in Appendix C.  As noted in 

the text, the right hand sides are assumed to be constant 

functions of the epoch elements of the satellite and the 

third body.  The equational forms of the X. and Z. are 
l     j 

given in Appendix H. 

a = 0 x 

e = 15 C n ££ (xx, • X-XJ x      x x n v 1 3   2 4' 

-C n 
l}x = -2nT  <Z11 + L1S> 

K  * ""¥*  <21 * Z3 " l4 • '•*> 
C n 0 

(u • n COsi)x - JLJL u     + z33 - 6) 

W sin l>x * 7HF    (22i 4 223> 

if  i    < 3    set   (fl  sin  i)     •  0 

E-l 
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ßv =   (fl sin  i)   /sin  i 

w    -  (u> + Ü cos  i)     -  cos  i ft A XX 
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APPENDIX F 

ZONAL PERIODIC EFFECTS 

The first-order short periodic variations due to J 2 

are given by Liu [17] and presented here for completeness. 

(I )|(f )   (x " I si"2i) + i si"2i cos 2 («•*> 6a = J- , - z   2 \ a 

-(l -f sin2i) (1-eV^j 

6e. 
2  21 p 1 - T si ta,')l*[ !*fe

2 
(1-e2)3'2 ] 

• 3 ( 1 + V ) cos f • I  e cos 2f • V cos 3f 
2 

•i' 2(f )2si„2i[(l^e2)cos (*,.£) 

1  /?  *  17 «^ I i7 * T e / • -j-  cos (2u>-f) • 5e cos (2w*2f) • j 

3 e" 
cos (2w*3f) • | e cos (2u>>4f) • ^ cos (2u)*5f) 

• n- e c os 2u> 

5i Z   '  I Ms) sin 2i x 

F-l 
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e cos   (2w*f)   • cos  2   («•£)   * | cos   (2w*3f) I 

if - M aoz " * 7J2(| i    cos i • e  sin f  -  e  -' y sin   (2w*f) 

-  j sin 2   U+f)   -  | sin   (2üj*3f) 

6lüz  s I J
2( J)     (4   •   5sin2i)   (f  -  M *  e  sin  f) 

•MS 3 
2 1      •     T    SI -2i) [i M e       sin 

•  2  sin  2f * iV e  sin  3f | -  ^ J 12 

«.  e2 /   .       15     .   2. 4  T I   l   '  X Sln   x 

3 
2  "2 

R\2|lfl      .2. 
p   /      )e    4   Sln  x 

SI] 
m 7 

in   (2w^f)     • ^ sin   i   sin   (2u- TE (2u-f) 

f) 
7       .   2. n bin l yfl-y sin   i )    sin  2   (u- 

5-   ( 1   '  -j- sin   i j      sin   (2u>*3f) 

g  sin^i   sin   (2u*4f)   -  ^ e  sin2i   sin   (2w*5f) 

16 J2\ p  ^       sin2i  sil'  2(J 
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Y 

6M = z 
3 T /R \ 2  (l-e2)172 j /,   3.2. 

" Z J2 (p )   i—e ~  I1 " 2 Sin X 

(l -|e2) sin f • | sin 2£ + |j sin 3f 

1 sin2i  - | ( 1 * | e2) sin (2w*f) 

] 
+ 4- 

2 2 
- ^- sin (2w-f) + | ( 1 - fg ) sin (2w+3f) 

+ 4 e s in (2u>+4f) + ^- sin (2»*5f)  I + ~ J2 ( | )   ( 

- e2)1/2 sin2i sin 2w 

where R is the equatorial radius of the Earth and p • a(l-e ). 
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APPENDIX G 

THIRD BODY PERIODIC EFFECTS 

The following equations represent the additive Lunar 

(second) inverse transformation, as given in Eq, (20) of 

the text, where X., Z., F. and C. are as given in Appendix 

H for Lunar-related variables.  To obtain the Solar (third) 

inverse transformation, determine the X., Z., and C for 

the epoch solar position and F- at the time of interest and 

substitute below: 

6e 
-303CTe L i 

n (FJXJXJ + F2 (X2X3 • X X4) • F3X2X4J 

6iL = 5^ <F1Z11 + F2Z12 + F3Z13^ 

-2CL 2 
6ML = IT*  (F1Z1 +  F2Z2 + F3Z3 +  3EL Sin FL <"7 " 3 eo» o 

äghL , fft! (Fiz3i •  K2232 •  F,Z 
3-33 "  9 EL sin FL } 

S\ -  iTT (F1Z21 + F2Z22 + F3Z23> a 

The long period third body terms for ft and w, when 

i  > .2 radians, are computed by: 

Oil», • 6gh, - cos i  öhL/ sin i 

G-l 
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6ß = 6hT/sin i 
L       0 

However, as reported in the text, the divisor by sin i 

for small inclinations necessitates the following change 

to intermediate variables: 

6a. -  6h. cos ß + 6i. cos i sin ß 

6ß*. - 6h, sin ß + <5i. cos i cos ß 

6L*L * 6£L + 6ghL = 6iL ß sin i 

where 

L*  = Mn • a) + ßcos (i) 

a  * sin (i) sin ß 

ß*  = sin (i) cos ß 

and where the variables on the right hand sides are inte- 

grated, third transformed variables. 

In this special case the periodics are applied through 

the intermediate variables L*, a, and ß*.  The integrated 

G-2 
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singly transformed variables are denoted by the p 

subscript: 

a • a + 6a. + 6a 
L    s 

* = ß* + 6ß*  + 6ß* 
jj      s 

L* = L* + 6L*  + 61* L      s 

tan'1 (u/ß*) 

i + 6 i. + 6i L    s 

M, Mp + 6ML * 6Ms 

% * L* - Mn • fio cos (S} 
P   P 

e  = e • 6e. + 6e„ p       L    s 

L  = M  • w  + fi 
P   P   P   P 
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APPENDIX H 
INITIAL VARIABLES COMMON TO APPENDICES E AND G 

The following variable calculations are intermediate 

and in themselves have no important physical definition. 

This collection of terms was chosen to minimize the number 

of calculations in obtaining third body effects. 

. 
al = cos Go cos (%  '  Ho J + sin Go cos lo    sin (ß( 

• Ho J 

a, = - sin G  cos (ft - H  ) + cos G  cos I  sin (o 
O      O O 0 

X        X 

•v 
a- = - cos G  sin (o  - H ) + sin G  cos I  cos (ft 

»0    0 O 0 
X X 

- Ho > 
X 

a« = sin G  sin I 
8      °x     °x 

aq = sin G  sin (ft - H ) • cos G  cos I  cos (ft 
X X XX 

• Ho J 
X 

a10 = cos G0 sin Io 

H-l 
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a0  = a_ cos i  • a0 sin i 2   7     08     o 

a4 = ag cos iQ • a1Q sin i 

ac  =  -a_  sin  1     +  aQ  cos  i 
5 7 08 0 

a.   =   -an  sin  i    +  a. n cos  i 6 9 o 10 o 

X,   =  a.   cos w    +  a-  sin 00 11 0 Z o 

X~   =  a_  cos to    +  a.   sin w 2 3 o 4 0 

X,  =  -a,   sin u>    +  a,, cos w 3 1 o 2 o 

X.   =   -a.   sin w    +  a.   cos w 4 3 o 4 o 

Xr   =  ac   sin u> 5 5 o 

X,   =  a,   sin 10 00 o 

X7  =  ac  cos a) 7 5 o 

XQ  =  a,   cos uj 80 0 

z31 = i2x; - 3X2 

Z32 " 24X1X2 " 6X3X4 

Z33   -   12X2   "   3X4 

H-2 
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Zl * 3X1 + 3X1 + % Z31 

Z2 - 6XlX2 • 6X3X4 • e2 ZJ2 

Z3 - 3X2 • 3X2 • e2 ZJ3 

Zli = "6X1X7 + 6X3X5 + eo ("24Xr- " 6W 

Z12 = -6XlX8 - 6X2X7 • 6X3X6 • 6X4X5 

>  e2 (-24X2X7 - 24 XjXg - 6XjX6 - 6X4X5) 

Z13 ' "6X2X8 + 6X4X6 + eo (-24X2X8 " 6W 

Z21 - 6X^5 • 6X3X7 • e2 (24XlX5 - 6X3X?) 

Z22 = 6X2X5 • 6XjX6 • 6X4X7 • 6X3Xg 

• e2 (24X2X5 • 24XjX6 - 6X4Xy - 6X3X3) 

Z23 - 6X2X6 • 6X4X8 • e2 (24X2X6 - 6X4Xg) 

Redefine Z., Z-,   and Z_ in terms of Z. above 

Zi * 2Zi + (> - eo> 23i   * m  1'2'3 

The constants 

CL = 4.7968065E-7 rad/min 

H-3 
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C = 2.98647969E-6 rad/min 

are derived from 

i  m I __x  
CY = 4 m • in  N 
A      A   e   A 

where 

m = mass of perturbing body (Moon or Sun)  and 

in = mass of the Earth e 

N = apparent mean motion of Moon (or Sun) about the Earth 

For the Sun we choose to approximate 

m 
~ 1, m -»-m x e 

while for the Moon we use m = *-*—w-w-  m . x  81.53 e 

The mean motions of the Sun and Moon are given by (see 

Appendix I also): 

Ns = 1.19459E-5 rad/min 

NL = 1.583521770E-4 rad/min 

The variables F., F?, and F, are conputed as follows where 

subscript x * L or s for Moon or Sun: 

H-4 
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Y   + Y  (t - t ) TX     TX v      0' 
O 

Y  + 2Ev sin v 'x    x    'x 

1/2 sin Fv cos Fv X       X 

F = 1/2 sin2FY T 1/4 

F3 ='F1 

(The F^ presented here are a simplification of the F. 

presented in the text (Eq. 11)). 
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APPENDIX I 
LUNAR AND SOLAR EPHEMERIDES 

The positions of the Moon and Sun in terms of 

classical equatorial elements are given as follows (see 

ref [5]): 

fli  * 259^1833275 - 0?0529539222t* 

cos iT  * cos t  cos iT  - sin e sin iT  cos ßT Lo h Le     Le 

sin /.      2. 1T  = / 1 - cos 1, 

m* - 270?4342 • 13?17ti965268t* 

T' = 334?329SS • 0?1114040803t* 

\    * m*   '  To o   o 

sin H.  sin i-  • sin i.  sin U 
o      o       Lz Lc 

cos H.  « /1 •» sin IL 

1-1 
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sin A  sin  iT     = sin e  sin Ü 
o e 

cos  A  = cos KT     cos  ftT     +  sin HT     sin i1T     cos  e 
o e o e 

U.     = m*  -  ß      •  tan 
Lo        °        Le 

1 sin A 
cos A 

Y   a 358?47584 • 0?985600267t* 
o 

NL * 13?06499244/day 

N * 798S600267/day 

where t* is the time in days since J,D. 241 5020.0 (1900 Jan 

0.5), and 

iL - 5T14S396 

c = 23.4441 

1-2 
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APPENDIX J 

INCLINATION AND ECCENTRICITY FUNCTIONS 

The generalized eccentricity and inclination formulae, 

Gtpq^ and FJtmp^' are 8iven böl°w (see Kaula [12]), 

These equations are extracted verbatim from Kaula for 

completeness.  For terms in which I  • 2p + q • 0, compute: 

1. Glp(2p-l)(e) = a_e2^-(l/2)   I K J d« o 

£-1    \ 

2d • l  - 2p* 

2d • I  -2p' 

d (!) 

2d+*-2p' 

in which 

p' • p for p < £/2, 

p' =  fc-p for p > 1/2. 

For the terms where I  - 2p • q f  0, the development of 

G a(e) is much more complicated; we merely quote the result 

of one solution (Tisserand, 1889, p. 256): 

cWe) (-1) «• (LBV!*1  I %qkQtp<,k6 
2k 

J-l 
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where 

B   • 

l*/l-e2 

and 

P        .   }     I 2p' - 2
MJLUI   /(I-2P: +q')e\r 

h -  k  + q' ,   q'   >   0;   h  - k,  qf   <  0; 

and 

fcpqk 

h     /   -2p' 
I 

r«0 h   -   r       r! 
(l-2p'*q')c\ r 

20 

h  =  k ,  q'   >  0;   h  *  k  -  q' ,  q'   <  0; 

p  =   p,   q'   *   q   for  p  <   Jt/2;   p'   -   t-p,   q'   *   -q   for  p  >   t/2 

While  the   inclination  function  F.     (i)   is  given by 

xmp *•  » • yi—«jr— sin l 
t  t!(t-t):(£-m-2t)!2^"-- 

m       /m\       m        / I   -  m  -   2t  •  s 

•A   • H'l< 
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m * s  \ 

.... w 

c-k 

Here k is the integer part of (a   <• «0/2, t is summed from 

0 to the lesser of p or k, and c is summed over all values 

making the binomial coefficients nonzero. 

As discussed in the text, the G.OQ(e) expressions are 

much too cumbersome and too computationally slow for a fast 

general perturbations theory because of the eccentricities 

with which we are dealing, while the F- _(i) have an exact 
*• mp 

formulation.  The F<>mnCi) are used as follows: 

F220 " ! t1 + C0S ^o»* 

F221 * I (sin (io))2 

F321 = T sin (io} (1 " 2 cos (io3 " 3 cos2 (io)} 

322 ^ sin (iQ) (1 * 2 cos (io) - cos2 (iQ)) 

F441 ' ^ Si"2 (io} (1 * C0S (io))2 

c     315  - 1 ,- v 
F442 * T  sin  (lo} 

FS22 * I515/32 (sin5 (*<>) '   2 sin3 (io} cos (io) 

5 sin3 (iQ) cos
2 iQ • sin (iQ) (-2/3 
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+ 4/3 cos (iQ) + 2 cos2 (i0)))] 

2 ,. F543  = [29.53125 sin (iQ) (-2-8 cos (iQ) + 12 cos' (io) 

• 8 cos3 (i ) - 10 cos4 (i ))] v o o 

and the G (e) are approximated by polynomials in e, 

depending upon the range of value of e. The approxi 

mations used by NORAD are as follows: 

20-1 306 - .44 (e  - .64) 

'211 

(3.616 - 13.247e • 16.29c2)      . 5<e  <.65 

(-72.099 + 331.819e - 508.738e2 

• 266.724e5) .65<e <.775 

310 

(-19.302  •   117.39e   -   228.419e 

+   156.591e3) 

2 

.5<e <.65 

(-346.844 • 1582.831e - 2415.925e 

3> • 1246.113* ) .65<e <.775 

'322 

(-18.9068 * 109.7927e - 214.6334e 

• 146.5816e3) 

(-342.585 • 1554.908e - 2366.899e 

• 1215.972e3) 

2 

.5<e     <.65 
2 

.65<e     <.775 
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410 

(-41.122 + 242.694e - 471,094e 

+ 313.953e3) .5<e <.65 

(-1052.797 + 4758,686e - 7193.992e 

+ 3651,957c3) ,65<e <. 775 

'422 

(-146.407 + 841.88e * 1629.014e 

+ 1Q83,4356s) ,5<e <.65 

(-3581.69 + 16178.lie «• 24462.77e2 

+ 12422,52eJ) .65<e <.775 

520 

(-532.114 + 3017,977e - 574Q.Q32e 

+ 3708.276s3) t5<e <.65 

(1464.74 - 4664.75e + 3763.64e2)   .65<e  <.715 

(-S149.66 + 29936.92e » 54087.36e2 

* 31324.56c3) .715<e <. 775 

'533 

(-913.2277 + 4988.61e - 9064.77e 

+ 5542.21e3) 

(-37995.78 + 161616.52e - 229838.2e 

.5<e  <.7 

• 109377 .94c3) .7<e  <.78 
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